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Abstract
High-dimensional energy landscapes of complex systems often exhibit a very
complicated structure, with many local minima separated by a multitude of
barriers of various heights. For the analysis of the dynamics on such landscapes,
simplified models based on combining many microstates to form physically
relevant macrostates are of great advantage. In particular, knowledge of the
relative sizes of minimum and transition regions is crucial. As an example, we
analyse transitions in low-energy regions belonging to a simple model of the
crystalline compound MgF2. We find that the minimum regions, i.e. the states
associated with only one particular minimum, extend to energies far above
the saddle points, and we show that the size of the transition regions is small
compared with the minimum regions.

PACS numbers: 0250, 0270L, 0590, 8820K

1. Introduction

Knowledge of the structure and properties of energy hypersurfaces is important for
understanding the dynamic and static features of a large variety of complex physical and
chemical systems [1–3]. Examples range from the relaxation dynamics in glasses [4–8] and
spin glasses [9, 10], over the folding transformation in proteins [11–14] and the study of the
properties of clusters [15], polymers [16] and solids [17,18], to the efficiency of combinatorial
optimization algorithms [19, 20]. Thus, a number of methods have been developed to
determine some of the global and local features of energy landscapes [21–28], for example
local minima and the barriers between them. These results have been used to construct highly
simplified representations of the energy landscape such as single-lump tree graphs [29,30] (also
called, for example, disconnection trees [31], disconnectivity graphs [16] or one-dimensional
projections [32]), where basins around local minima of the energy landscape are represented
as nodes of a tree graph.

In previous work [33], we have shown how the threshold algorithm [30, 34] can be used
to go beyond the purely energetic aspects of the barriers in the landscape by constructing
the so-called transition maps [33], in addition to the tree graphs. Together, they show the
observed connections and transition probabilities among the local minima, and include for
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each minimum the so-called return energies ER
100% and ER

80% (previously also called return
probabilities), which are a measure of the difficulty of leaving a minimum region. The energy
landscapes of simplified models of MgF2 and CaF2 [35] served as example systems.

In this paper, we extend our analysis of the barrier structure of energy landscapes by
addressing the question of how regions of the energy landscape that energetically lie above
the barrier among the minima can be classified. For this, we are going to perform both
global explorations of pockets of the landscape containing several minima and a more detailed
analysis of several transitions between low-lying minima in the system MgF2. Together with
the transition maps and the tree graphs, this information can serve as input for simplified
representations of landscapes that can be used to model the dynamics of such systems.

2. Model system and method

2.1. Model

The global analysis of the energy landscape of a solid is highly non-trivial, and even nowadays
it is necessary to employ a number of radical simplifications to achieve this task. Since the
simplified model of MgF2 that we have used for our investigations has already been presented
in detail in earlier papers [33, 35], we restrict ourselves to a short summary and refer to that
work for details regarding the geometric structures of the local minima found during the global
optimization.

In the model, we have introduced periodic boundary conditions, and we employ two
formula units (z = 2) of atoms per simulation cell. Furthermore, we use a simple empirical
two-body interaction potential between the atoms consisting of a Coulomb and a Lennard-
Jones term, in order to allow for fast calculations of the energy of a given configuration [35].
Over 50 structurally different local minima have been found, with the global minimum (VI-a
in figure 1) corresponding to the experimentally observed rutile structure. Figure 1 shows the
simplified (only the seven most prominent basins are depicted) tree graph of the system, for
reference. The paper presented here focuses on the low-energy region containing the major
minima VI-a and VII-a1.

2.2. Algorithms

For the investigation of the transitions among the minima, several algorithms were used that
explore the landscape or well defined sub-regions thereof stochastically via random walks
according to a prescribed move class. In all instances, the move class consisted of random
movements of single atoms (85%) and variations of the cell parameters (15%). For the Monte
Carlo algorithm, the Metropolis acceptance criterion was employed with a constant temperature
parameter T [36]. For T = 0, only moves are accepted that do not raise the energy. This
corresponds to the second algorithm employed, the (stochastic) quench algorithm. Finally, the
so-called threshold algorithm [30] proceeds as follows: starting from a local minimum m0,
the system explores the landscape for nthr random steps, where every move is accepted that
does not cross a prescribed energy lid Lk (threshold phase). During this random walk, quench
runs (of length nqu) ending in minima mA are performed periodically every nh steps starting
from halting points x(h)i numbered with i (quench phase). If mA �= m0, a transition has taken
place at a lid value of Lk . In general, this threshold–quench combination is repeated for a
sequence of consecutive lid values, and the whole procedure is applied to all local minima of

1 Several minor local minima observed in the course of this investigation but not listed in earlier work [35] are given
in table 1.
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Figure 1. Tree-graph diagram representation of the energy landscape of MgF2 showing the most
important minimum regions (cf [33, 35]). The nodes at the ends of the branches represent local
minima and are located at the energies of these minima: VI-a—rutile, VI-b—the anatase type,
VI-c—a half-filled NaCl variant, VI-d—the CdCl2 type, and VI-e, VII-a and V-a—three structures
with prismatic, sevenfold and fivefold coordination of Mg by F, respectively. The intersection of
an edge emanating from a minimum with the remainder of the graph indicates that a transition
between this minimum and some other minima is possible without exceeding the energy at which
the vertex is located. By construction, this graph representation contains no loops, resulting in
a tree graph. The heights of the bars at the minima indicate the so-called return energies ER

100%
(dark) and ER

80% (light), respectively [33].

interest. The sampled part of the configuration space up to Lk starting from m0 is called a
pocket P(Lk;m0).

These threshold runs are repeated many times, and, in addition, the quench runs at each
point x(h)i are repeated for several random numbers. Based on a series of test runs (cf the
appendix), we have chosen nthr = 2.5 × 105 as a standard length for threshold runs.

2.3. Characteristic regions

If the energy of the lid is higher than a neighbouring barrier, several local minima are, in
principle, accessible by a quench run from a halting point x(h) above such a barrier. The
probability of reaching one of the accessible local minima mA in a stochastic quench run from
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Table 1. Crystallographic data for the new (idealized) local minima.

Minimum Space group Cell constants
E (eV/atom) (crystal system) a, b, c (Å); α, β, γ Atom x y z

V-ba P 4/nmm (129), a = 3.623, c = 4.766 F2 (2c) 1/4 3/4 1/2
−5.886 tetragonal α = 90.00, β = 90.00, γ = 90.00 F1 (2a) 1/4 1/4 0.904

Mg (2a) 1/4 1/4 0.306

V-cb P mn21 (31), a = 3.799, b = 3.726, c = 4.800 F2 (2a) 1/2 0.389 0.118
−5.920 orthorhombic α = 90.00, β = 90.00, γ = 90.00 F1 (2a) 1/2 0.572 0.734

Mg (2a) 1/2 0.899 0.246

VI-gc C mma (67), a = 5.194, b = 5.286, c = 4.743 Mg (4g) 1/2 3/4 0.301
−5.999 orthorhombic α = 90.00, β = 90.00, γ = 90.00 F2 (4f) 1/4 1/2 1/2

F1 (4e) 1/4 3/4 0

VII-dd P 21/m (11), a = 3.586, b = 3.428, c = 5.243 Mg (2e) 0.690 3/4 0.760
−6.085 monoclinic α = 90.00, β = 100.74, γ = 90.00 F2 (2e) 0.766 1/4 0.081

F1 (2e) 0.250 3/4 0.414

a CN = 5, stacked sheets of chess-board-like alternating tetragonal pyramids.
b CN = 5, network of (distorted) corner-connected pyramids with central atom shifted from centre, cations build
pyramids around anions too.
c CN = 6, prisms, 1/2 NiAs with a plane of prisms shifted by 1/2, hcp of anions.
d CN = 7, distorted VII-a structure with one twisted edge of the mono-capped prisms.

a given starting configuration x(h) is denoted P(A; x(h)). The set of these probabilities as a
function of x(h), W(x(h)) = {P(A; x(h))} (

∑
A P (A; x(h)) = 1) yields important information

about the effective connectivity of the landscape at energies above the first saddle points. Using
a suitable binning procedure, one can group all states with similar W together in characteristic
regions2 C. States that are associated with more than one minimum region form the transition
(saddle) regions of the landscape.

For practical purposes, we have chosen a very simple and rather rough criterion for
classifying the configurations encountered: all states from which 80% or more of the quench
runs reach one specific local minimum mA are assigned to its minimum region or its boundary
CP(A)�0.8. The remaining states are associated with various transition regions between
particular minima, e.g. C0.4�P(A)�0.6∧0.4�P(B)�0.6.

These characteristic regions can serve as building blocks for a graphlike representation
of the landscape, which takes the relative sizes of the minimum and transition regions, and
their connectivity, into account. In certain instances, this structure can be mapped onto a tree
model, but in general the landscape will be represented as a graph containing circuits3.

Ideally, the characteristic regions would be locally ergodic [18], i.e. the time to leave
such a region would be much longer than the local equilibration time, τesc 	 τeq. If that is
the case, one can analyse the relaxation and time evolution of the system on the landscape
using a separation of timescales. For t < τeq one studies the dynamics within one (isolated)
characteristic region, while for t > τesc one only needs to deal with the (stochastic) dynamics
on the graph [29, 38–40].

2 If the characteristic regions consisted of disconnected pieces, one would usually split them up accordingly.
3 Such graphs have also been observed as a result of coarse-graining procedures that identify regions without internal
energetic barriers on discrete landscapes [37, 38].
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2.4. Representation using characteristic coordinates

Sometimes it is possible to give a highly simplified visual representation of the probability of
entering a certain minimum, if relevant static and/or dynamic aspects of a pocket can be captured
by a (few) characteristic coordinate(s) Q. All the other ‘dimensions’ of the landscape are
suppressed, and the saddle point in such a one- (low-) dimensional representation corresponds
to the lowest saddle between the two minima. For each value of Q, we plot the probabilities
P(A) and P(B) to reach minimum mA or mB , respectively, ‘averaged’ over all configurations
xQ within the pocket with the same value of Q.

One should note that this simplified representation is most meaningful if for a given value
of Q (and energy E) W(xQ) does not vary much as function of xQ. In such a case, the union
of the points xQ (with similar W(xQ)) would constitute a characteristic region4, as defined in
section 2.3, and one would be justified in replacing the individual distributions P(A; xQ) by
their ‘average’ P(A;Q) for each value of Q.

3. Results

3.1. Global explorations

As a first step, we studied the statistical distribution of the outcomes of different quench
runs departing from the same halting point x(h)i , for a number of halting points essentially
randomly distributed within the pockets under investigation. As starting points for the quench
runs, we selected the endpoints of the last threshold phase for standard (nthr = 2.5 × 105)
and very long runs (nthr = 5 × 105), performing ten different quenches for the lid values
Lk = −5.9,−5.7,−5.6,−5.5,−5.4 eV/atom, and 20 for Lk = −5.8 eV/atom, respectively.
In addition several intermediate halting points for Lk = −5.6,−5.4,−5.0 eV/atom were
chosen as starting points. Each quench run consisted of up to 5 × 104 steps. We observed
that the distribution of local minima found when starting from the end points of standard
and very long threshold runs were essentially identical, indicating that the standard length
(nthr = 2.5 × 105) was sufficient to sample the possible transitions within a pocket.

However, the major result was the fact that for a given x
(h)
i the quench runs nearly always

only ended in one and the same local minimum. In 26 out of the above 31 instances, all
quenches reached the same minimum, and in four cases 90% of the quenches reached the same
minimum, indicating that these points belonged to the rim of the respective minima. Only
one halting point clearly belonged to a transition region, with the outcome of the quench runs
evenly distributed over two local minima. This is particularly noteworthy, since the energies of
all the halting points were significantly above those of the saddle points within the respective
pockets.

This result suggests the hypothesis that a large part of the configuration space can be
associated with particular local minima, in the sense that the probability of reaching this one
minimum via a stochastic quench is very large, even though in principle many local minima
are accessible, if we only consider the energies of the lowest barriers among them. Conversely,
the saddle regions between such ‘basins’ appear to be rather narrow.

This result was confirmed by an extended analysis of the pocket containing the minima VI-
a and VII-a using very long threshold runs (5×106 steps) with 25 independent quench runs for
each halting point (nh = 5 × 104, or nh = 5 × 105; Lk = −6.1,−6.0,−5.9,−5.8 eV/atom).
It was found that for each halting point all the quench runs ended in the same minimum (either

4 If such regions are locally ergodic, one can treat Q as an order parameter, and use the density of states in the region
g(E;Q) to calculate the local free energy F(Q), with all the statistical mechanical implications.
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Figure 2. Transition VI-a to VI-c. Energy curve of the threshold run with halting points (white
circles) between nthr = 2.5 × 104 and nthr = 1.25 × 105. Black diamonds show the energies of
the end configurations of quench runs.

VI-a or VII-a, respectively). Thus it appears that we would need a much higher resolution,
i.e. higher density of halting points, in order to find a sizeable number of points belonging to
transition regions5.

3.2. Detailed analysis of transition paths

The global (with respect to the pockets chosen) investigations in the preceding subsection
suggest that the saddle regions are quite small compared to the minimum regions. In order
to obtain a better estimate of the actual size of the transition regions, three complete random
walks where transitions between deep-lying local minima in the system MgF2 had occurred
during threshold runs were investigated in detail. The three runs chosen were VI-a → VII-a
(Lk = −5.8, nthr = 5×104, nh = 103), VII-a → VI-a (Lk = −6.1, nthr = 5×104, nh = 103)
and VI-a → VI-c (Lk = −5.6, nthr = 2.5 × 105, nh = 5 × 103), where in the transition region
every nh steps ten long quench runs were performed. In order to convey an impression of the
energy profiles of these runs, an excerpt from the run VI-a → VI-c is depicted in figure 2.
Profiles for the other runs can be found in [41]. The x

(h)
i are indicated by white circles, and

the energies of the final configurations of the quench runs are shown as black diamonds.

3.2.1. MgF2: VI-a → VII-a. Along the path, the system was found about 6% of the time in
the transition region, and the transition itself took place in a narrow range nthr = 3.5 × 104–
3.7 × 104, giving an estimated width of ≈3 × 103 MC steps for the transition region. Only
once, a high-lying side-minimum corresponding to a prism structure (VI-g) was found.

For halting points outside the transition range, the topology of the structures x(h)i usually
resembled the minimum reached after the quench run, mA (VI-a or VII-a), sufficiently to allow
a visual identification, although E(x

(h)
i ) was considerably higher than E(mA) and the energy

of the saddle between VI-a and VII-a.
5 Of course, since we are using a stochastic quench algorithm, it is not possible to define precise widths of the
transition regions—all statements will be subject to statistical errors.



Characteristic regions on the energy landscape of MgF2 4047

2.0 2.5 3.0

0

2

4

6

8

10

P
P

Q

Q

2.0 2.1 2.2 2.3 2.4 2.5 2.6

0

2

4

6

8

10

(a)

(b)

Figure 3. Probabilities P(mA) of reaching various local minima mA versus structure coordinate
Q(VI-a, VII-a) for the halting points along the threshold trajectory VI-a–VII-a in the energy range
around −5.6 eV/atom (a) and along the threshold trajectory VII-a–VI-a in the range around
−6.0 eV/atom (b). Ten quench runs were performed at each halting point. Black diamonds,
P (VI-a); white triangles, P (VII-a). Due to the lower energies of the halting points, the range of
the Q-values is smaller in (b) than in (a). The points at Q = 2.22 belong to a different part of
the energy landscape (see text); here, black circle, P (VI-a); ×, P (VI-g); white circle, P (VII-a).
The values of Q for the actual minima VII-a and VI-a are 2.04 and 2.76, respectively. The dotted
curves are drawn as a guide to the eye.

In figure 3(a), the quench probabilities P(Q) as a function of a structure parameter Q are
shown. Here Q is defined as the sum of four characteristic Mg–F nearest-neighbour distances
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belonging to atoms connected via the 21-symmetry element in the ideal VII-a structure. The
values of Q for the actual minima VII-a and VI-a are 2.04 and 2.76, respectively. Two aspects
of the figure should be noted: first, the quench probabilities follow a steep sigmoid, indicating
that as a function of Q the transition is quite narrow, although we are at energies far above
the saddle point. Furthermore, we note one point on the plot (marked by a circle), which
does not fit on the curve at all. A detailed look at its probability distribution discloses that
this halting point actually belongs to the transition region between VII-a and VI-g, and not
to the one between VII-a and VI-a. Clearly, it is not allowable to include this point in the
‘average’ P(Q); thus we are dealing with an example where the points xQ belong to two
different characteristic regions for the same value of Q.

3.2.2. MgF2: VI-a → VI-c. It is no surprise that the situation is more complex along this
transition path, since the energy lid is high enough to enable access to several major minima
including numerous very small side minima. Figure 2 shows that the threshold random walk
has actually passed through two minimum regions (VII-a at nh ≈ 5×104 and V-b at nh ≈ 105)
on its way to VI-c (for nh > 1.5 × 105). The distribution over minima found during the
quench runs shows five minima as possible end configurations. In addition to those mentioned
above, VI-g also was accessible from one transition region. However, it was never the sole
end configuration for a set of quench runs; and thus no extended region of configuration space
could be associated with it. Since too many local minima are involved along this path, it was
not possible to define a simple structure parameter or set of structure parameters, and no plot
P(Q) is given for this example.

Analysing the geometry of the configurations showed that those x
(h)
i that are associated

with VI-a again exhibit the rutile structure, but with larger distortions due to the higher energy
E(x

(h)
i ) compared with the configurations in the previous section 3.2.1. After nh ≈ 1.25×105,

the x
(h)
i essentially resemble the VI-c minimum, while in between x

(h)
i show mostly the

characteristics of the V-b minimum. Overall, along this path, the system is found in transition
regions about 15% of the time. The widths of the various transition regions explored during
this random walk were about one order of magnitude larger than for the VII-a/VI-a transition
region at lower energies (≈104 − 2 × 104 MC steps).

3.2.3. MgF2: VII-a → VI-a. Along the path, the system was found about 2% of the time in
the transition region, whose width in MC steps is estimated to be about ≈2 × 103, which is
comparable to that observed in section 3.2.1.

The analysis of the geometric structures of the configurations xhi for nh = 1 × 104–
2 × 104 shows that up to nh = 1.7 × 104 the sevenfold coordination (Mg by F) of the VII-a-
structure and the corresponding connections among atoms are approximately preserved. The
sixfold coordination (Mg by F) and the general topology of rutile (i.e. rows of edge-connected
polyhedra linked by opposite vertices to the next rows) is reached for nh > 1.8 × 104. At
first sight, this suggests that the transition takes place around nh = 1.7 × 104, supported by
the fact that the energy profile always remains above E(VII-a) for nh < 1.8 × 104. However,
the transition range is actually reached much earlier during the threshold run, since for halting
points between nh = 9 × 103 and nh = 1.7 × 104 the quench runs exclusively end up in the
minimum VI-a. Although the starting configurations still exhibit the features of the sevenfold
coordination, one crucial pair of distances between Mg and F is already characteristically
elongated (cf the definition of Q in section 3.2.1), thus initiating the transformation into a
sixfold coordination.

In figure 3(b), we show again P(Q), using the same definition for Q as in section 3.2.1.
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The shape of P(Q) is again a sigmoid, but since we are dealing with a lower energy slice
(L = −6.1 eV/atom versus L = −5.8 eV/atom in section 3.2.1) the transition between VI-a
and VII-a is even narrower, and the range of observed Q-values is somewhat smaller.

4. Discussion and outlook

The analysis of the halting points, both for the global exploration and along the transition
paths, in the preceding section can be summarized as follows: the actual saddle regions, where
there is a high probability (>10%) for a quench run to reach different local minima, are quite
small: even along paths that connect two or more minimum regions, the width of the transition
regions is only on the order of a few 103 to a few 104 MC steps, with the larger value found for
random walks at higher energies. The time within the transition regions has to be contrasted
with the time spent within the minimum regions, which is about one order of magnitude larger.
This correlates nicely with the results of the global explorations, which also suggest that the
size of the minimum regions is considerably larger than the transition regions.

A second closely related result of this analysis is that many states with energies high
above the energy barriers still can be assigned unambiguously to certain local minima based
on the criterion of the end configurations of stochastic quench runs. This is strongly supported
by the observation that, geometrically and topologically, these high-lying states bear a strong
resemblance to the accessible minima in the pocket.

Of course, the sample size for random walks on the energy landscape is not large enough
for a complete coarse-grained description of the landscape. Nevertheless, the runs presented
in the previous section allow us to construct a first qualitative model of the explored portion
of the VI-a–VII-a pocket6 from the observed characteristic regions (cf figure 4). One notices
that this representation of the pocket is not a tree model but a graph containing circuits. In
addition, we see that even at high energies the minimum regions are much larger than the
transition regions, although we have focused on random walks that visit at least two minima.
Finally, we note that at higher energies saddles connecting several minima make up a sizeable
fraction of the transition regions.

Even without a detailed analysis of the system’s dynamics on the characteristic regions
graph, the relative sizes of minimum (SM) and transition (ST) regions can already serve as a first
indication of the chemical system’s tendency to form crystalline (SM 	 ST) and amorphous
(ST 	 SM) compounds, respectively. Furthermore, the sizes of minimum regions at moderate
to high energies are an indication of the thermal stability of the compound corresponding to
the particular minimum7. For example, for our model system, the results would suggest that
MgF2 should form stable crystalline compounds (at least up to moderate temperatures).

Similarly, the range of minima accessible from points within the transition regions as
a function of temperature can yield information about possible phase transitions. Such an
analysis has been performed for amorphous Si3B3N7 [42]. Here, the distributions of local
minima that could be reached by quench runs from halting points x

(h)
i along long MC

trajectories were investigated for a large range of temperatures. For each set of minima
{m(x

(h)
i )}, the mean rms distance among these minima was computed, and the average over

all these mean values was calculated for each temperature. This average minimum–minimum

6 In this paper, we did not include the transitions to the minima VI-d, VI-e and V-a, which are also accessible, in
principle, forLk = −5.6 eV/atom (cf figure 1). However, these minima are considerably more remote from the centre
of the pocket than for example VI-c, as one can see from the transition maps for the system in [33]—an example
where the tree graph taken by itself can give a misleading impression.
7 Clearly, such information about the sizes of characteristic regions can also be useful for the design of efficient global
optimization strategies on multi-minimum cost function landscapes.
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Figure 4. Graph representation based on characteristic regions derived from threshold runs with
different lids for the pocket of the energy landscape of MgF2 containing the major minima VI-a, VII-
a and VI-c. Energies of the minima involved are given in eV/atom. Circles indicate accessible local
minima; squares and triangles represent saddles connecting two and three minima, respectively.
For each energy level, the percentage of the random walks spent in a characteristic region is listed
next to the symbol (circles without percentages indicate those regions that were only visited during
the quench phase and not during the statistically relevant threshold phase). Solid curves connect
those characteristic regions within one energy range that are neighbours according to the random
walks. Dashed curves connect the minimum characteristic regions between different energy levels.

distance increased monotonically with temperature, with a sharp increase by about an order of
magnitude at a temperature TF that corresponded to the ‘freezing’ temperature of the system.

In this context, it would be very interesting to compare and possibly combine the
characteristic regions presented here with the so-called inherent structures on landscapes
of disordered systems [43], which are obtained by using a deterministic (gradient-based)
technique for local optimization. In the latter case the focus is on the fastest downhill path
ignoring other routes of descent available, and x(h) is uniquely assigned to some critical point
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of the landscape (minimum, saddle) resulting in a sharp division of the landscape. In contrast,
the stochastic quench runs produce a probability distribution over the local minima that are
accessible from x(h), W(x(h)), which changes only gradually as function of x(h). Thus, the true
size of a saddle region and the range of accessible minima can be perceived when employing
the stochastic approach—quantities that are expected to be closely connected to the relaxation
behaviour of realistic systems at finite temperatures.

While the methodology presented in this paper is applicable to all multi-minimum energy
landscapes, the current computational limitations make the comparison between experiment
and theory rather difficult8. However, study of more and more ‘realistic’ systems is clearly
going to be needed, if one wants to reach the point where a valid comparison with experiment
becomes feasible.

Here, the characteristic region analysis can provide us with a general procedure to go
beyond the tree-graph models when constructing simplified representations of landscapes.
Already the more easily obtainable information about the relative sizes of transition and
minimum regions should serve as valuable input to abstract tree models of landscapes.
However, this approach towards increasingly realistic models will have to be complemented by
the investigation of simplified model systems, where one has more control about the relation
between energy and relative positions of the states in configuration space, if one wants to reach
a deeper understanding of the properties of energy landscapes.
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Appendix

In earlier work [30], we have shown how one can derive bounds on the energy barriers between
the minima, and estimates of the local densities of states from the combined outcome of
such threshold runs. In order to estimate the length nthr of the threshold runs needed to
sample the pocket, we compare the sampling of the local density of states for one of the
minima employed in this paper, VI-a (rutile) in the MgF2 system, for six different lid levels
L1–6 = −5.8,−5.7,−5.6,−5.5,−5.4,−5.0 eV/atom. We observe that the major features
of the local density of states are already accessible for nthr = 5 × 104 (cf figure 3.1 in [41]).

In contrast, the occurrence of transitions is expected to be influenced more strongly by the
length of the threshold phase, but while doubling nthr from 2.5 × 105 to 5 × 105 leads in some
rare instances to a slight reduction in the lowest lid values where the transition is present, the
basic structure of the tree graphs does not change. Only for very short runs (nthr = 104) do we
observe major rearrangements of the trees. Thus, we chose nthr = 2.5 × 105 as the standard
length for the threshold runs. As a further check, we repeated these test runs for many different
random numbers, starting from VI-a. The general properties of the transitions were preserved:
the energy barriers to other important local minima in the pocket (e.g. VI-c and VII-a) did not
change and the percentage of transitions into these minima remained essentially the same.

8 The work presented took the equivalent of about 2 years computing on a single high-end work station.
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